REACTION OF CHLOROTOLUENETRICARBONYLCHROMIUM COMPLEXES WITH α -SULFONYL-CARBANIONS

Rami KHOURZOM, Françoise ROSE-MUNCH and Eric ROSE

Université P. et M.Curie, Laboratoire de Chimie Organique associé au CNRS, 4 Place Jussieu, Tour 44-45, 75252 Paris Cedex 05, France.

Abstract: Primary and secondary α -sulfonyl-carbanions react with chlorotoluenetricarbonylchromium complexes to give, after CF3CO2H treatment, aryl-sulfones via ipso, cine and tele nucleophilic aromatic substitution of chloride.

It is well known that stabilized carbon nucleophiles can react with arenetricarbonyl chromium complexes¹ to give anionic cyclohexadienyl intermediates, which in turn can yield substituted arenes² on oxidation and substituted cyclohexadienes on treatment with acids³ or electrophiles⁴ and with iodine. In either case, the tricarbonylchromium entity is lost. However, if the complex is substituted by a good leaving group, we recently described that *cine* and *tele* SNAr occur without loss of the tricarbonylchromium entity⁵ if the complex is treated with a carbanion followed by an acid treatment.

The carbon nucleophiles which react with these complexes are very often stabilized carbanions such as α -alkoxycarbonyl, α -cyano, α -dithianyl, cyanohydrinacetal², α -aminonitriles⁶ or esters^{6,7} carbanions. In some cases, alkyllithium can react with these complexes (e.g. ^tBuLi⁸) but other alkyllithium species fail because proton abstraction from the arene ligand becomes important². Anions less reactive than ester enolates² also fail, e.g. ketone enolates. We report here our first results relative to the reaction of chlorotoluenetricarbonylchromium complexes with a new type of anions : the α sulfonylcarbanions.

P-toluenesulfonylethane carbanion <u>2a</u> (1.1 eq, obtained by lithiation of *p*-toluenesulfonylethane⁹ in THF at -78°C for 2 h and at -10°C for 10 mn) by treatment with *p*-chlorotoluenetricarbonylchromium complex <u>1a</u> in THF and TMEDA (1.1eq) (-78°C, 1h; -10°C, 30 mn; 0°C, 20 mn) yields after CF3CO₂H treatment at -78°C disubstituted complexes

<u>**3a**</u>^{*} (69% yield) and <u>**3b**</u>^{*} (17% yield) (eq.1) (Table 1, entry 1). Similarly, carbanion <u>**2a**</u> reacts with *m*- and *o*-chlorotoluenetricarbonylchromium complexes <u>**1b** and <u>**1c**</u> to give upon CF3CO2H treatment, respectively complexes <u>**3a**</u> (38% yield) and <u>**3b**</u> (38% yield) (Table 1, entry 2) and complex <u>**3b**</u> (81% yield) (Table 1, entry 3).</u>

Primary carbanion^{**} <u>2b</u>¹⁰ reacts similarly with complexes <u>1a</u>, <u>1b</u>, and <u>1c</u> to afford complexes <u>4</u> (Table 1, entries 4-8). It is worthy to note that complex <u>1a</u> and carbanion <u>2b</u> give the products <u>4a</u>^{*} and <u>4b</u>^{*} at -10°C (Table 1, entry 5) but only the complex <u>4b</u> under thermodynamic control¹¹ at 0°C (Table 1, entry 4). The same observation is made in the case of complex <u>1b</u> (Table 1, entries 6 and 7). In the case of *o*-chlorotoluene tricarbonylchromium, *p*-toluenesulfonylmethane carbanion yields after CF₃CO₂H treatment only the *meta*-disubstituted complex <u>4b</u> which is deuterated only at the C-2 position if CF-3CO₂D is used. Thesa data prove definitively that a *cine* nucleophilic aromatic substitution occurs in this case and eliminates a possible *tele-para* SNAr mechanism (Table 1, entry 8).

In conclusion, our results show that primary and secondary α -sulfonylcarbanions react with chlorotoluenetricarbonylchromium complexes[§] via *cine* and *tele*-SNAr : this is to our knowledge without precedent in the literature and extends the number of nucleophiles able to react with these complexes. Carbanions <u>2a</u> and <u>2b</u> add to chlorobenzenetricarbonylchromium complexes via *ipso*, *cine* or *tele* SNAr. In two cases, carbanion <u>2b</u> adds reversibly to these complexes even in the presence of one or two equivalents of TMEDA to give a regioselectivity which is not invariant in passing from kinetic to thermodynamic control. We shall describe this point in a near future.

We thank Drs S.Ratton and B.Langlois for helpful discussions, Rhône-Poulenc for financial support in particular for one of us (R.K.).

* Satisfactory spectral and analytical data have been obtained for all new compounds. NMR data CDC13: <u>**3a**</u>: -CH<u>Me</u> 1.54(d); Ar<u>Me</u>Cr 2.07(s); -C6H4-<u>Me</u> 2.43(s); -C<u>H</u>Me 3.85(q); ArH 5.02(d), 5.06(t), 5.19(d), 5.32(t); -C6H4- 7.29(d) and 7.55(d); <u>**3h**</u>: -CH<u>Me</u> 1.58(d); Ar<u>Me</u>Cr 2.14(s); -C6H4-Me 2.44(s); -C<u>H</u>Me 3.86(q); ArH 5.07(d), 5.08(s), 5.19(d), 5.21(t); -C6H4- 7.31 and 7.39ppm; <u>**4a**</u>: Ar<u>Me</u>Cr 2.05(s); -C6H4-<u>Me</u> 2.44(s); -CH2- 4.23(d) and 3.80(d);

Complex	Nucleophile ^k	Products (yield %)			Entry
	RSO ₂ CHLiMe		$Cr(CO)_3$ - SO_2R	$\overbrace{I}^{Cr(CO)_3}$	
<u>1a</u>	<u>2a</u>	'SO ₂ R <u>3a</u> (69) ^f	<u>3b</u> (17) ^e	<u>3c</u> (0)	1 ^h 80/20/0
	<u>2a</u>	(38) ^{e or g}	(38) ^{f or j}	(0)	2 ^h 50/50/0
$\begin{array}{c} Cr(CO)_{3} \\ \hline \\ \hline \\ Cl \\ \underline{lc} \end{array}$	<u>2a</u>	(0)	(81) ^e	(0)	3 ^h 0/100/0
	RSO ₂ CH ₂ Li		$Cr(CO)_3$		
1a	<u>2b</u>	<u>4a</u> ^{SO₂R (0)}	4 <u>b</u> (72) ^e	4c (0)	4 ^{a,i} 0/100/0
<u>1a</u>	<u>2b</u>	(20) ^f ((20) ^e	(0)	5 ^{b,i} 50/50/0
<u>1b</u>	<u>2b</u>	(9) ^{e or g} ((36) ^f	(12) ^e	6 ^{c,i} 16/63/21
1b	<u>2b</u>	(16) ^{e or j} ((27) ^{f or j}	(3) ^e	7 ^{d,i} 35/59/6
15	<u>2b</u>	(3) ^f ((65) ^e	(0)	8 ^{c,i} 4/96/0

Table 1: Products obtained by treatment of halogenoarenetricarbonyl chromium complexes with α -sulfonyl carbanions (R=-p-C₆H₄CH₃)

a: -10°C, 30mn; 0°C, 20mn (THF/TMEDA 1.1.eq); b: -10°C, 150mn (THF/TMEDA 1.1eq) 50% of the starting material is recovered; c: 0°C, 20mn; d: -10°C, 10mn; e: cine SNAr; f: tele-meta SNAr; g: tele-para SNAr; h: ratio (3a/3b/3c); i: ratio (4a/4b/4c); j: ipso SNAr; k: in solution in THF in the presence of 1.1eq. of TMEDA

ArH: 5.38(t), 5.25(d), 5.14(m); <u>4b</u>: Ar<u>Me</u>Cr 2.13(s); -C6H4-<u>Me</u> 2.44(s); -CH2- 3.91(s); ArH 4.90(d), 4.99(s), 5.11(d), 5.36(t); -C6H4- 7.33(d) and 7.66(d); <u>4c</u>: Ar<u>Me</u>Cr 2.13(s); -C6H4- <u>Me</u> 2.44(s); -CH2- 3.85(s); ArH 5.11(d) and 5.22(d); -C6H4- 7.33(d) and 7.66(d).

** Tertiary carbanions of sulfones (e.g. *p*-toluenesulfonyl-2 butane) react with poor yields perhaps for steric reasons. Primary and secondary α -sulfonyl- carbanions do not react without TMEDA.

§ The same reactions work with trifluoromethylchlorobenzenetricarbonylchromium complexes but arenetricarbonylchromium complexes are contaminated by substituted cyclohexadienes because rearomatization does not occur systematically¹².

References:

 For reviews, see a) Principles and Applications of Organotransition Metal Chemistry (1987), University Science Books, Mill Valley, Ca, J.P.COLLMAN, L.S.HEGEDUS, J.R.NORTON and R.G.FINKE.

- 2) M.F.SEMMELHACK, Ann.N.Y.Acad.Sci., 1977, 295, 36.
- M.F.SEMMELHACK, H.T.HALL Jr, R.FARINA, M.YOSHIFUJI, G.CLARK, T.BAGAR, K.HIROTSU and J.CLARDY, J.Am.Chem.Soc., 1979, 101, 3535.
- 4) E.P.KÜNDIG and D.P.SIMMONS, J.Chem.Soc.Chem.Comm., 1983 p1320.
- 5) J.C.BOUTONNET, F.ROSE-MUNCH, E.ROSE and A.SEMRA, Bull.Soc.Chim.Fr., 1987, p.640.
- 6) F.ROSE-MUNCH, K.ANISS and E.ROSE, J.Organomet.Chem., 1990 in press.
- M.CHAARI, J.P.LAVERGNE and P.VIALLEFONT, Synthetic Comm., 1989, 19, 1211.
- 8) R.J.CARD and W.S. TRAHANOVSKY, *Tetrahedron Lett.*, 1973, 3823.
- 9) H.KOTAKE, K.INOMATA, H.KINOSHITA, Y.SAKAMOTO and Y.KANETO, Bull.Chem.Soc.Jpn., 1980, <u>53</u>, 3027.
- 10) F.G.BORDWELL and R.H.IMES, J.Am.Chem.Soc., 1967, 89, 3905
- E.P.KÜNDIG, V.DESOBRY, D.P.SIMMONS and E.WENGER, J.Am.Chem.Soc., 1989, <u>111</u>, 1804.
- F.ROSE-MUNCH, E.ROSE, A.SEMRA, Y.JEANNIN and F.ROBERT, J.Organomet.Chem., 1988, <u>353</u>, 53.

b) V.N.KALININ, Russian Chemical Reviews, 1987, 56, 7.